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Mathematical Programming
under Uncertainty



Deterministic Optimization Model =

» Model decision-making process as an optimization problem

min  f(x,y,0)
st. g(x,y,0) <0
h(x,y,0) =0
reX,yeyY

» Variables tuantameaasygUispretess (x), whether to install a process or not (y)
» Constraints thé&mass balance, to satisfy the customer demand

» Objective pinimize total cost

» Parameters Product demand, unit cost, thermal and kinetic properties

» The input parameters 6 can be uncertain.



Sources of Parameter Uncertainty

» Long-term forecasts, e.g., natural gas price

Henry Hub Daily Natural Gas Price in 2020

Jan 01,2020 Mar 31,2020 Jun 29,2020 Sep 27,2020 Dec 26,2020

» Short-term changing conditions, e.g., extreme weather




BUSINESS

How Southwest Airlines Melted Down

Dec. 28, 2022
The Wall Street Journal

Share-price performance
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"Airline executives and labor leaders point to inadequate technology systems, in
particular, SkySolver, as one reason why a brutal winter storm turned into a debacle.
SkySolver was overwhelmed by the scale of the task of sorting out which pilots and
flight attendants could work which flights, Southwest executives said. ”



How Do We Model Uncertainty in Optimization Problems?

» Not a uniquely-defined problem
d Multiple ways to hedge against uncertainty/risk
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Risk-based Process Design =

» Motivation: Process units may fail.
» Solution: Have backup units to improve reliability

» Trade-off: Investment cost v.s. system reliability. How many units should we
install?
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Industrial Methanol Synthesis
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Industrial Methanol Synthesis =

Deterministic Model Profit = 4115.3749 ($1000 PER YEAR)

Too optimistic
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Industrial Methanol Synthesis =

Stochastic Programming Model Expected Profit = 3203.6879 ($1000
PER YEAR)

Consider demand uncertainty and reliability Simultaneously
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Sensor Placement under Uncertainty 72D

» Motivation: Determine the optimal configurations of sensors to maximize
the probability of detecting safety hazards

» Flame, smoke, and heat detectors using chemical or optical sensors

/

Obstructions
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Work of Prof. Carl Laird with P2SAC



Sensor Placement under Uncertainty 72D

» Facility with 81 candidate flame detector locations (Kenexis Consulting
Corporation)

T. Zhen, K.A.Klise, S. Cunningham et al. / Process Safety and
Environmental Protection 132 (2019) 47-58 12



Mathematical Optimization for Sensor Placement @

» Mixed-integer nonlinear programming (MINLP) formulation

Maximize expected coverage

subjectto Zx, <k

/ leL

Place at most k sensors
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Binary variable, whether to
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expected coverage of entity
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Sensor Placement under Uncertainty 720

» Facility with 81 candidate flame detector locations (Kenexis Consulting
Corporation).

» Find the optimal configuration within 2 hours with a tailored algorithm
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Machine Learning for
Process Monitoring

* Fault Detection: Detect if a fault has occurred
* Fault Identification: Identify the variables most relevant to the fault
* Fault Diagnosis (or Classification): Diagnose the root cause of the fault

'

Fault Yes | Fault Fault Process
Detection Identification Classification Recovery

!




Tennessee Eastman process =

» TEP is an open-source simulator written in Fortran that resembles a real
chemical process by Eastman

» Time series data can be collected from over 40 sensors that measure the
state variables.

» Task: From measured state variables, perform fault detection using ML/AI
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Examples of State Variables with Sensor Data

Examples include feed flow rates, temperatures, pressures
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List of Potential Faults =

» The following “faults” are created synthetically by the simulator

» These faults will cause the measured state variables to change from their
normal operating conditions which further cause safety hazards.

IDV (20)

Unknown

Variable number Process variable Type
IDV (1) A/C feed ratio, B composition constant (stream 4) Step
IDV (2) B composition, A/C ratio constant (stream 4) Step
IDV (3) D feed temperature (stream 2) Step
IDV (4) Reactor cooling water inlet temperature Step
IDV (5) Condenser cooling water inlet temperature Step
IDV (6) A feed loss (stream 1) Step
IDV (7) C header pressure loss—reduced availability (stream 4) Step
IDV (8) A, B, C feed composition (stream 4) - Random variation
IDV (9) D feed temperature (stream 2) Random variation
IDV (10) C feed temperature (stream 4) Random variation
IDV (11) Reactor cooling water inlet temperature Random variation
IDV (12) Condenser cooling water inlet temperature Random variation
IDV (13) Reaction kinetics Slow drift
IDV (14) Reactor cooling water valve Sticking
IDV (15) Condensor cooling water valve Sticking
IDV (16) Unknown Unknown
IDV (17) Unknown Unknown
IDV (18) Unknown Unknown
IDV (19) Unknown Unknown

Unknown

18



Step change in reactor cooling water temperature @

» This fault could cause runaway reaction. The controller will increase the
cooling water flowrate to bring the temperature down

Fault 0: Normal operating condition
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Classical Machine Learning Algorithm ~ 7=D

» Principal component analysis: identify the principal components where the
data have the largest variance. The non-principal components are “noise”.

» Approach: singular value decomposition
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Principal component analysis =

» The region within the thresholds represents the Normal Operating Condition
(NOCQ) under random noise.

» The region outside of the thresholds represents the systematic variation
from NOC.

0.40 -

A - Fault data
x NOC data
Thresholds

0.35 A

0.30 A

0.25 A

0.20 A

P(x)

0.15 A

0.10 A

0.05 A

0.00

1-dim 3-dim
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PCA applied on TEP dataset =

» We implemented PCA algorithm applied to TEP data set in Python.
» PCA works well on linearly correlated variables.
» Achieve a fault detection rate of almost 90%,

i.e., 90% of the faults are detected by the algorithm.

Fault FDR % FPR %
1 99.88 0.0
2 98.88 0.0
3 26.88 4.37
4 100.0 0.62
) 100.0 0.62
6 100.0 0.0
7 100.0 0.0
8 98.5 0.0
9 20.88 5.0
10 94.5 0.0
11 83.0 0.0
12 99.88 0.62
13 95.62 0.0
14 100.0 0.0
1> 40.75 0.0
16 960.2> 1.88
17 96.88 0.62
18 92.12 0.0
19 93.75 0.0
20 91.88 0.0
21 73.88 0.0

Work by PhD student Hao Chen

FDR%: Fault Detection Rate; FPR %: False Positive Rate. 24



Limitations of PCA @

» PCA works well on linearly correlated variables.

F,
/[ FC,in
F1 FH,in FH,out
— >
\E F3 FC,out
F,=F,+F; Fain =Fyout Fruin = Fuout

» But chemical processes, such as flash units and heat exchangers, involve
variables that are nonlinearly correlated

F3, %3

FCI TC,in

Fy, T in m Fu, Thout

Fllxl

F3,x3 Fe, TC,out

+
i

Fixq = Fox; + F3x3 Fucpu(Thin — Trout) = Fecpe(Teout — Te,in)
25



Deep learning methods

» Autoencoder: utilize the artificial neural network to capture the nonlinearity
among variables and map to lower dimensional representations.

» Wide successful applications of autoencoder in tasks such as image
reconstruction.

» Capture more complex patterns and better suited for various input data

Autoencoders

Encoder Decoder

Latent Space
Representation
G() H () H

24



Comparison of PCA & autoencoder results 720

» Implementation of autoencoder in Python using the Pytorch library.

» No significant difference between PCA and autoencoder due to the linearity
of TEP data. We expect better performance of autoencoder than PCA on real
industrial data such as data from refineries.

O PyTorch
PCA Autoencoder
Fayilt FRR.% FRR % Faylt FDR % FPR %
g g _'8 e 02
: 0 et | ot b
g 188:8 : § 1§8:§ :
Lo B | s i i
: : 10 7.12 0.62
12 §83f'g° o 1 ?;zE :
14 §0§ §§ 12 %'0. gi
%g g :5 1.88 2 880 D75
ié %:?9 gé %é Sy g:
21 ég : %1 ?g % 28
FDR%: 85.88% FPR %: 0.65% FDR%: 86.68%; FPR %: 0.48%
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Case Study =

» Fault 11 (random variation in reactor cooling water inlet temperature)
» Oscillations in reactor temperature and cooling water flow rate

» Prevent runaway reaction
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Future research plan =

» Improve the explainability of machine learning methods

deep learning-based models such as
autoencoder and recurrent neural network

Encoder Decoder

Computationally efficient to use online
Hard to interpret

GQ) H()

» Develop machine learning models based on open-source Python libraries, such as
Pytorch, scikit-learn. Made them open-source for P2SAC sponsors.

» Look for collaborations with industry to study real-world datasets, e.g., digital twins,
data lakes.
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